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A note on the application of the method of strained 
coordinates to a problem of wave propagation in plasmas 
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Department of Mathematics, University of Strathclyde, 26 Richmond Street, Glasgow 
G 1  1 X H , U K  

Received 16 May 1978 

Abstract. An initial value problem for a system of partial differential equations relating to 
wave propagation in plasmas is considered. A dimensionless parameter p, characterising 
the wave amplitude, is contained in the problem and satisfies O s p  < 1. When fi<< 1 the 
approximate technique of solution known as the method of strained coordinates is appro- 
priate. For a certain class of restricted initial conditions an exact solution of the initial value 
problem is derived and a comparison of this solution and the approximate solution to 
leading order in p, for this class, reveals good agreement for all p. More generally a scaling 
of the independent and dependent variables can be found so as to eliminate p from the 
problem and this property explains why, for the restricted class, the agreement is indepen- 
dent of p. 

1. Introduction 

The system of quasi-linear partial differential equations 

frequently arises in problems of one-dimensional propagation of slowly varying non- 
linear waves. The method of derivation of (1) is given by Whitham (1974) who provides 
many illustrations from the theory of water waves and non-linear optics. Essentially it is 
assumed that the basic equations of the particular problem are satisfied by variables 
which depend on space and time in two ways, namely via the faster oscillation associated 
with a uniform periodic wave motion with phase variable x and the slow modulation 
whose space and time dependence is represented by X and T, the scales of which are 
considered to be much greater than the wavelength and period of the waves respec- 
tively. Equations (1) then emerge as conditions necessary to avoid secular terms in x 
and correspond to averaging the uniform solution over a period in x. The elements of 
the column vector W and the matrix A thus involve quantities which are constant for 
uniform waves but vary with X and T for the slowly varying waves. 

In a previous paper (Gribben and Parkes 1977) we examined the propagation of 
slowly varying non-linear waves in a cold, slightly non-uniform plasma and derived the 
system (1) in which 
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The precise definition and physical significance of the dependent variables is given in 
Gribben and Parkes (1977). Here it is sufficient to note that essentially y, U and K 

measure the amplitude, group velocity and wavenumber of :he waves respectively and 
N is the mean particle number density. The equations are seen to form a 'degenerate' 
hyperbolic system with a single family of characteristics dX/dT == U. occurring with 
multiplicity four. We note that :he first three equations of (1) are independent of the 
fourth which may be solved separately for K once y, U and iV have been determined. 

We consider the solution of equations ( I )  as an initial value problem with initial 
conditions 

imposed at T - 0 .  The positive dimensionless parameter p is introduced here to 
characterise the magnitude of the wave amplitude and the theory on which the 
equations are based is valid for 0 S p < 1. In Gribben and Parkes (1977) an exact 
solution of the equations was quoted for the case in which ? is quadratic in X and 0, fl 
and t2 are constants. 

In both 3: 2 and 3: 3 below it is convenient to introduce a new set of independent 
variables 6, 7 in place of X ,  T. The variable 6 is chosen so that 5 =constant are the 
characteristic curves and 7 = T. The transformation thus requires 

using suffix notation for partial derivatives where convenient. Hence the characteristics 
are given by 

x, = U (3 1 
and the equations (1) become 

Y, = 0, 

( X f l ) ,  = 0, 

U, = N'/2ye /2X, ,  

(&K), = 

If 8 is set equal to X when 7 = 0 the initial conditions ( 2 )  become 

Y = CL?(&), U = at), N = flm, K = k (6) when 7 = O .  (8) 

We note immediately from (4) that the solution for y is y = p?(e), implying that values 
of y are propagated unchanged along the characteristics. 

When p << 1, y is small and the equations then appear to be susceptible to the 
approximate method of solution known as the strained coordinate technique. In S: 2 we 
follow this approach through for the general initial conditions (8). For certain restricted 
initial conditions the use of this technique indicates the form of the exact solution which 
is derived in 9: 3 where brief remarks are made about its properties. The solution quoted 
in Gribben and Parkes (1977) is a particular example of this exact solution. In 3: 4 a 
comparison is made of the results derived from the strained coordinate method with 
those from the exact solution. I t  is found that even to leading order in p the former 
gives good results over a considerable part of the domain of the exact solution wharever 
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the value of p. This result is examined further and an explanation given. Irs importance 
lies in the poszible use of the method of strained coordinates in this and similar problems 
when exact solutions are not available. 

2. Application of the method of strained coordinates 

If p K 1 we can deduce the leading order behaviour of the roiution by noting that U, is 
small and hence U is approximately constant along the characteristics which are 
themselves determined as straight lines to a first approximation from (3). Correspond- 
ing approximations to N and K then follow f rom (6j and (7). This sequence of steps 
corresponds to a linear theory of the equations for small amplitude waves and is well 
known to fail at large times, however small ( # 0)may be, essentially because there the 
straight line characteristics can no longer represent good approxiniations to the true. 
curved ones. 

The  usual method of improving linear theory by straining the linearized charac- 
teristic coordinates in a way which avoids the non-uniformity in validity has Seen given 
by Lighthill (see, for example, Whitham 1974 or  Van Dyke 1979). In applying the 
method here we strain the linearised characteristic coordinate by assuming an expan- 
sion in p of the form 

X(&, q )  -= x‘r)’(5, 77)  i- pX(I’(6,  7)) + . . . 

U(&, V I =  U(O’(5, f7)+FU(1’ (5,  V I + .  . 

In addition we suppose 

together with similar expansions for N(&,  q )  and K ( & ,  q). 

leading order terms the linearised solution already described, namely 
The  substitution of these expansions into the equations ( 3 ) ,  ( 5 ) ,  (6) and ( 7 )  yields for 

X(O) = r.?(&)q + 6, 
fi(&), 

“”’= ‘G([)/(l+ cy&), 

where o’([) = do /d&.  We  could now calculate the first order terms in in general, but 
it suffices here (and for the rest of this paper) to choose the special case l? = constant for 
which the solutions take a much simpler form. Thus the above results become in this 
case 

d 
X(OJ = fJT + 5; (y“ fJ “O’ = $@), f € ( O ’ =  K 1 ( & ) +  q-(A’ / ”C)) ,  a t  
and the results for the first order functions, which satisfy zero initial conditions, are 

x(I) = $$‘/2(5)+’([)$, 

(&)+t(5)T* u(l) = p 2  

N(’)  = -$i j (g)[A”2(5)3’(5>]‘q2, 
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K ( l )  = -if? (5)[fi1/2(5)jq6)]’T)2 - ~ [ f i 1 / ’ ( ~ ) ] ’ N ’ / ’ ~ ~ ’ ( ~ ) ] ~ ~  

- kfi (6 )[fil I2 (6 19 (6 11’ rT 3 .  

From this solution, for example, the characteristics 6 = constant are parabolae in the 
(X,  T )  plane to O ( p )  and are given by the equation 

The variable y is positive by definition and for the physically realistic case where T = 0 
outside some finite range of 5, say 0 d 5 d L, and continuous for all 6, ?’(e) is positive for 
6 near to and greater than zero and negative for 6 near to and less than L. Consequently 
the characteristics emerging from the points X = 0 and X = L, which may be taken to 
bound the region of influence of the initial data to this order, have oppositely signed 
curvature and it may be verified that they intersect at a finite time T*, where 

4L T*’ = 
p( f i l / z (o ) jqo) -  f i1 l2(L) jqL)) ’  

The solution breaks down at a time (s  T * )  corresponding to the first intersection of 
characteristics within the region of influence. 

We now consider the solution to first order corresponding to initial conditions which 
are restricted in the disturbance region by the constraint [fi1’’(5)9’(5)]’ = -A, where A 
is a positive constant. In this case fi1”([)?’(6) = A (i-t), where 5 = 8 is the charac- 
teristic corresponding to the peak of the y profile. Henceforth we shall refer to this case 
as the restricted initial value problem. In the disturbance region the solution can be 
written 

X = f i ~  + 6 + + A  (i- 6)pv2, 
U = c!? + +A (8 - f ) p v ,  

N = fi(6)(1 +:APT*), 

K = K*([)(l + f A p ~ 2 ) + ~ [ f i 1 / 2 ( ~ ) ] ’ ( l  +&Apv2).  

(9) 

The characteristics in the (X ,  T )  plane are given by 

and they all converge to the point (X* ,  T*) at which the solution breaks down, where 

X* = c!?T* + [, T* = ~ ( A / L ) - ~ ” .  (11) 

3. An exact solution of the restricted initial value problem 

In this section we consider an exact solution in the disturbance region corresponding to 
the restricted initial value problem described in 3: 2. This solution, for the particular 
case in which fl and 2 are constant and is parabolic, was quoted by Gribben and 
Parkes (1977) to illustrate the behaviour of a packet of electron waves propagating in a 
cold, slightly non-uniform plasma stream. 



Wave propagation in plasmas 2345 

By continuing the procedure described in 9 2 i t  is found that additional factors Apq2  
appear in the higher order terms but the 5 dependence remains the same as in the first 
order terms. This suggests a trial solution in the form 

where f, g and h are unknown functions satisfyingf(0) = g(0) = 0,  h(0)  = 1. When these 
expressions are substituted into equations (3), (5) and ( 6 )  we obtain 

where the primes denote differentiation with respect to the variable ( A C L ) ~ ’ ~ ~ .  These 
equations can be solved by elementary methods for 

f((AP)1/277)= F b ) ,  g((ACL)”’T) = G(o) and h [ ( A ~ ) ~ / ~ q ]  = H ( a )  

to yield the expressions 

F = ~ ’ ( 2  -U’) ,  

G = 21/20(1 - g 2 ) - l l 2 ,  

H = (1 - a2)-2, 

where the transformed time variable (+ is given implicitly in terms of 77 by the relation 

satisfying U = 0 when 77 = 0. The solution for K is obtained easily from (7) and is 

K = K*(t)H(u)+ [fi1’2(~)]’(Ap)-1~2J(u), (19) 

J = 21/2[0(1 - +sin-’ a ] ( l -  (20) 

where 

The general properties of the solution follow closely the description given at the end 
of 9: 2. The characteristic curves are determined from (12) and (15) as 

X - OT - lu2(2  - a2) 
=constant, 

(1 -u2y 5 =  

where a is given in terms of T by (18) with 77 = T. The disturbance represented by the 
initial profile in 0 s X s L is confined to the finite region R of the ( X ,  T )  plane bounded 
by the characteristics 6 = 0 and 6 = L. From (12) the width of R at any instant is 

(X) , , ,  - (X) , , ,  = L(1 - U  2 2  ) . 

All the characteristics in R converge to the point ( X + ,  T’) where U = 1 and the solution 
breaks down. From (12), (15) and (18) 
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Also from (18), c is a monotonic increasing function which increases from 0 to 1 as 17 
increases from 0 to T'. The gradient of U, which is always negative, is constant for fixed 
q in 0 c c L, and its magnitude increases with 17 until  the solution breaks down at 
(+ = 1. Along each characteristic N increases with 7. 

4. Discussion 

The approximate solution of the restricted initial value problem given by the expres- 
sions (9) can be compared with the exact solution obtained in 8 3. Thus, for example, 
the time at which the solution breaks down is given by the approximation (11) as 

T4' = ~ ( A F ) - * ' ~ ,  

compared with the true value of 

given by (22). Hence T*/T+ = 1.200 and first order theory in p overestimates T+ by 
only 20%. In figure 1 the pair of characteristics bounding R in the ( X ,  T )  plane as 
predicted by both the exact (equation (2 1)) and approximate (equation (10)) solutions 
are plotted for a typical case. The exact characteristics and their approximations are 
seen to agree closely over a considerable part of the domain. 

X 

Figure 1. A diagram in the (X ,  T )  plane of the exact and approximate (broken curves) 
characteristics 6 = 0, L, which bound the disturbed region R for the case in which U = $, 
LjT* =$, measured in appropriate velocity units and i=  L / 2 .  The line [=LIZ cor- 
responds to the peak of the disturbance. 
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To give some kind of universal comparison of approximate and exact solutions the 
functions F, G, H and J in (1S), (16), (17) and (20) are compared in figure 2 with their 
approximating functions, from (9), 

1" =&v2,  g* = $(Ap)1,12v, 

h* = 1 +$Agq2, j *  = ( ~ p  )'"'T (1 + ii~pU.77 '), 

respectively, each of which depends on U only, from (18). As the ratios f * / F ,  g*/G, 
h " j H  and j * / J  depend o n o  only, the figures are the same whatever the values of A and 
F .  It is seen that all the approximating functions are less than 10% in error over more 
than half the range O S  T < T +  for which the exact solution exists. Figure 2(c) actually 
gives the ratio of the approximate value of N ?o the true value. However, to obtain the 
corresponding ratios for X, U and K a particular choice of cr, fi, K A ,  i, h and p mlist be 
made, as in figure 1. 

4 > 
x 

3 T' 
7- T 

Figure 2. A comparison of the functions F, G, H and J with their approximating functions 
f*. g*, h* and j * .  

As far as the approximate series solution obtained by the strained coordinate 
method is concerned, from a simple order of magnitude point of view we might expect 
the approximation (9) for small p to remain a reasonable one throughout a substantial 
part of the domain of validity of the exact solution because the neglected terms in the 
series are of smaller order than the leading order terms in p for all 17 of O(p- - ) ,  
provided a < t .  At breakdown, of course, 77 is O(g-1'2). 

The comparison of the approximate solution with the exact one led to a re- 
examination of the basic equations. In fact, provided 0 is constant, the parameter p, 
can be eliminated from equations (3)-(7)  with the otherwise more general initial 
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conditions (8) by a stretching of the dependent and independent variables. Indeed, a 
clear indication of the appropriate transformation is given by the expressions (1 2), (1 3), 
(14), (18) and (19) used in obtaining the exact solution of the restricted initial value 
problem. Thus we define 

x , p - l / y j -  77 + t + X ( Z ;  $19 
N = N(5,  .?I, 

X- = 0, r*  = 0,  U* = N15+/2(1 +X6), 
[(l+X,)N]*=O, [(l +X,)K1]*=0, [(l+rt,)&]*= 

Y = CLY(S, f j ) ,  

K = El([, .?I+ p-”*K2(& 771, 
U =  o+p’/2u(5, f j ) ,  

where f j  = p 1/27. Under this transformation the equations become 

(23) 

satisfying the conditions 

x=u=o, N = iqt), r = 3(5>, K 1 =  K*(5), 
K 2 = O  on f j  = O .  (24) 

Since p no longer appears in equations (23) and conditions (24) the method of 
strained coordinates is not applicable. However, a Taylor series solution in the time 
variable f j ,  with coefficients depending on 5; can be obtained as an approximate form of 
solution and this would be appropriate for the initial value problem. It can be verified 
that such a series solution takes the form 

= f i 1 / 2  “ I  - 
Y 772/4+o(?4), 

i1 =;[I -+(rj1/231yjj2]+~(fj4), 
i2=p A 1/2  )fj+0(fj3), I  

and corresponds precisely to the solution obtained by the method of strained coor- 
dinates in the original variables. Hence the latter method is of value in the present 
problem for general values of p, being simply a disguised form of Taylor series solution 
of the differential equations. For the restricted initial value problem we have seen that 
the equations can be solved exactly. In  other words, in this case it is possible to write 
down the complete sum of the Taylor series (25). 

The fact that the strained coordinate method to first order in p gives good results 
encourages its adoption for more general types of initial conditions in a cold plasma and 
for the study of the propagation of slowly varying non-linear waves in a ‘warm’ 
non-uniform plasma. In the latter case (to be reported elsewhere) the system of 
modulation equations is an appropriately modified version of the cold plasma equations 
discussed in this paper and it appears that an exact solution is not available. 
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